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N O N L I N E A R  P R O B L E M  O F  A STEADY-STATE F L O W  OF A W E I G H A B L E  

LIQUID B O U N D E D  BY A F R E E  SURFACE A B O U T  A S Y S T E M  OF V O R T I C E S  

S. I. Gorlov UDC 532.59 

The problem of a fluid f low with a free surface about a system of two vortices of opposite 
intensity is considered within the framework of the nonlinear theory. The range of parameters 

of the problem in which there is no stationary solution is found. Results of the numerical 
experiment on the effect of  vortex intensities and the Froude number on the shape of the free 

surface and the hydrodynamic reactions of the singularities are given. 

The problem of a fluid flow that is bounded by a free surface about a system of hydrodynamic singu- 
larities has broad applications. The majority of related studies are devoted to a single vortex in flow (see, 
e.g., [1] and references therein). The only example of the solution of the problem of a flow about a system of 
two vortices and sources is given by Val'dman [2]. Great progress in the field of development of the numerical 
methods of solving nonlinear problems of wave hydrodynamics has increased interest in this problem. 

Our goal is to develop a new numerical method of solving nonlinear problems of a free surface-bounded 
steady-state flow of a weighable liquid about the hydrodynamic singularities. The method is applied to the 
solution of the flow problem for a system of two vortices of opposite intensity. The effect of the character of 
wave formation on the wave resistance of the vortices is studied. Great attention is paid to the profiles of the 
generated waves. 

It is noteworthy that the numerical method of solving nonlinear stationary wave problems ~ a variant 
of the more general method of integral boundary equations the use of which has recently led to significant 
achievements in this field of research [3]. 

1. Let a stationary flow with a free surface L flow about a system of two vortices of opposite intensity. 
The fluid is assumed to be ideal, incompressible, weighable, and homogeneous. A coordinate system in which 
the x axis is located along the unperturbed level of the free surface and the y axis passes through the point 
of position of the first vortex (Fig. 1) is introduced. In this system, the vortex of intensity F is located at the 
point (0 , -h) ,  and the vortex of intensity - F  is at the point (d , -h ) .  We introduce the following notation: 
Voc is the fluid velocity oil infinity at the left, p is the density of the fluid, g is the acceleration of gravity, and 
f ( x )  is a function that describes the shape of the free surface L. 

We consider the problem in the plane of a complex variable z = x + iy. The analytical function 17"(z) 
that describes the fluid motion should satisfy the conditions of constant pressure and the zero normal velocity 
component on the free surface: 

Im (V'(z)(1 + i f ' ( x ) ) )  = O, z -= x + i f ( x ) ,  ix I < +oc; (1.1) 

1 
f(x) = V9 (Y~ -IY(z)12), z = x + i f ( x ) ,  Izl < (1.2) 
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Fig. 1. Flow pattern. 

In addition, the conditions of damping of the velocity perturbations and free surface at infinity on the 
left should be satisfied: 

lim i ( z )  = V~, lim f ( x )  = O. (1.3) 

2. For the functions i ( z )  and f ( x ) ,  the boundary-value problem (1.1)-(1.3) is nonlinear. The nonlinear 
nature is due to two factors: 1) the complex velocity if(z) enters (1.2) in a nonlinear manner; 2) the shape of 
the free surface at which the boundary conditions (1.1) and (1.2) are satisfied is unknown. This circumstance 
creates some difficulties. We reduce the boundary-value problem (1.1)-(1.3) to the solution of a system of 
integral equations in terms of two real functions of one variable. 

We introduce the intensity ~(x) of the vortex-layer located on the free surface, assuming that L is 
a smooth curve, 1,(x) satisfies the HSlder condition, and "),(-oc) = 0. In these assumptions, the complex 
velocity of the fluid is described by the formula 

F 1 F 1 + i f  -y(r 1 - i f ' ( ~ )  
i ( z )  = vo~ + 2~--i z - z~ 2~i z - ~-----~ ~ ~ z - r v/1 + (f , (~))2 

d~, 

- -OO 

(2.1) 

z l  =- - i h ,  z2 = d - ih ,  ~(~) = ~ + i f (~ ) .  

From the assumption on the damping of the vortex-layer intensity at infinity at the left, it follows that 
the function i ( z )  constructed according to (2.1) satisfies condition (1.3). 

In approaching L from below, the limiting value of the function 12(z) is determined by the Sokhotskii- 
Plemelj formula 

1 1 - i f ' ( x )  (2.2) 
i ( z )  = Vo(z) -4- ~ "/(x) v~ 1 -4- ( f ' ( x ) )  2' 

where i0(z) is calculated from (2.1) for z = x + i f ( x ) ;  the corresponding improper integral should be 
understood in the sense of the principal Cauchy value. 

With allowance for (2.1) and (2.2), the kinematic and dynamic conditions (1.1) and (1.2) are reduced 
to 

Im (i0(z)( 1 + i f ' ( x ) ) )  = O, z = x + i f ( x ) ;  (2.3) 

f ( . )  = 

(2.4) 
1 +. i f ' i x  ) 

V0s(z) = Re(i0(z) x / l  + ( f , ( x ) ) 2  ] ,  z = x + i f ( x ) .  

Here V0s(z) is the tangent component of the velocity Vo(z) .  

The hydrodynamic loads R x j  and Ryj that act on the vortices are determined by the formula 
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R y j + i R = j  - p i F  V ~ + - ~ i z  2 zl ~ i  z j : - ( (~ )  x / l + ( f , ( ~ ) ) 2  ' 
- - 0 0  

where j = 1 for the vortex of intensity F and j = 2 for the vortex of intensity - F .  
3. To solve the system of nonlinear integral equations (2.3) and (2.4), we use the generalized Newton 

method [4]: 

e (~) + C('~)A'7 ('~) + C ~ ' ) A f  (n) +e(f~,)Af '(n) = 0 ;  (3.1) 

A f (,~) = F (~) -4- F(n) A'T ('~) + F~") A f (n) + F(,~)Af'(~); (3.2) 

AT(n) = 7(~+:) _ 7(~), Af(,~) = f(n+:) _ f(n), Afl( ,)  = f,(n+U _ f,(~), n = O, 1, . . .  ; 

"y(~ = 0, f(~ = O, f'(~ = 0, IxI < +oo. (3.3) 

Here G(~/, f ,  f ' )  and F('y, f ,  f ' )  are the left part of (2.3) and the right part  of (2.4), respectively, G (n), G (n), 
, ~'(") G~ n) G ;  ), F (n), F (n), F~ n), and "S' are the integrodifferential operators and their partial  derivatives with 

respect to 3', f ,  and f '  for the functions 7 = 7 ('~), f = f(~), and f '  = fl(,~), respectively. The expression (3.3) 
determines the initial approximation for 7, f ,  and f ' .  

We consider the free surface L in the computational domain [Xa, Xb] (xa << - h ,  Xb >> h). It is assumed 
that 7(x) = f (x )  = 0 for x ~< x~, and f ( x )  and 7(x) are assumed to be periodic for x >~ Xb. Under these 
assumptions, the expression for the complex velocity (2.1) can be written in the form 

Xb 
C 1 F 1 1 f "7(~) 1 - i f ' ( ~ )  

J ? (z )  V~ + 27ri z - zi 2~ei z - z2 ~ /  z - ~(~) ~ 1  + (f,(~))2 dE 
2; a 

xb+A+o c 

1 J; E "7(~) 1 -if'(~) 
+ k=o z - + + x/-1 + 

d(. (3.4) 
Xb 

Here the last term is due to the presence of the infinite system of waves of length A for x >~ xb. 
We solve the system of linear integral equations (3.1), (3.2) by the method of high-order panels [5]. 

With this in view, we construct a grid of nodes xk (k = 1 , . . . ,  N + 1), x: = xa, and XN+: = Xb in the region 
[x<,xb]. We require the fulfillment of the linearized boundary conditions (3.1) and (3.2) at the points of 
collocation x0k E [xk,xk+:] (k = 1 , . . . ,  N). Then, this system is discretized under the assumption that the 
free surface in the interval [xk, xk+l] is approximated by a parabola, and the vortex-layer intensity on this 
interval by a linear function. Here it is assumed that  "7(xl) = f ( x l )  = O. At the points of collocation, the 
values of the derivative f ' (x)  are expressed via the values of f (x )  in the adjacent nodes by means of fourth- 
order numerical differentiation formulas [6]. As a result, we obtain a system of linear algebraic equations 
relative to AT(~)(xk) and Af(n)(xk) (k = 2 , . . .  , N  + 1). 

Below, we shall describe the algorithm for solving the problem as a whole. The Newton method is 
iterated until a certain solution is obtained. The initial approximation is determined by (3.3). The last term 
in (3.4), which is due to the presence of the infinite wave system, is omitted. At each step, a system of 2N 
linear equations is solved by the method of high relaxation. After that,  the second iterative process connected 
with the use of the Newton method as the initial approximation of the already known solution is used. Here 
the length of the generated waves A is found from the solution obtained at the previous step of the additional 
iterative process. This process proceeds until the necessary accuracy is achieved. 

4. Using the suggested method, we performed the numerical experiment on the solution of the problem 
of a steady-state flow of a weighable fluid about a system of two vortices of opposite intensity in the presence 
of a free surface. The dimensionless parameters of the problem are the Froude number Fr = Voo/vr'~ and 
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Fig. 2. Limiting values of Fo,max (1) and F0,min (2) at which 
the solution of the problem is possible versus the Froude num- 
ber Ft. 
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Fig. 3. Shape of the free surface for Fr = 0.5: curves 1-6 refer to F0 = -0 .3 ,  -0 .6 ,  -0.861,  0.4, 
0.8, and 1.142, respectively. 

Fig. 4. Forces C=l and C=2 tha t  act on the  vort ices versus the intensities Fo of these vortices: 
curves 1-3 refer to Fr -- 0.5, 0.8, and 1, respectively. 
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TABLE 1 

Fr Fo 

- 0 . 3 1 - - 0 . 2  -0.i  0.1 1 

0.5 0.6037 0.4016 0.2004 -0.1996 

0.8 0.6141 0.4067 0.2017 -0,1981 

1.0 0.6144 0.4068 0.2018 -0.1979 

Cv2 

0.5 -0.5971 -0 .3987 -0.1997 0.2003 

0.8 -0.5842 -0.3933 -0.1984 0.2015 

1.0 -0.5787 -0.3921 -0.1982 0.2017 

O.2 l O.3 

-0.3985 -0.5968 
-0.3923 -0.5825 
-0.3909 -0.5789 

0.4014 0.6033 

0.4061 0.6134 

0.4065 0.6149 

the vortex intensity F0 -- F/(Vo~h). The  domain [-2.5A0, 4.5A0], in which )~o = 27rV2~/g is the wavelength 
obtained according to the linear theory, was chosen as a computational  domain. It was assumed in the 
calculations that N -= 210 and d = A0/2. 

For a fixed value of the Froude number,  the level of perturbations of the free surface is determined 
by tile vortex intensities. The height of the free surface cannot be greater  than ylim/h = Fr2/2. This 
circumstance imposes restrictions on the value of F0. Increasing or decreasing F0, one can obtain the limiting 
values of F0,mox and F0,min at which the problem posed can be solved. These  values are given in Fig. 2 for 
various Ft. The maximum rise of the free surface which is calculated for the limiting values of F0 is not 

smaller than 85-86% of Ylim/h. 
Figure 3 shows results of the numerical experiment obtained with the use of the estimate of the effect 

of the parameters of the problem on the character  of wave formation. In the case where the vortex located 
upstream has a positive intensity, the maximum value of the free surface is at tained at infinity on the right 
(Fig. 3b). If the vortex of negative intensi ty is located upstream, the maximum rise of the free surface is 
observed immediately above the system of vortices (Fig. 3a). Thus, the character  of the waves formed in a 
distant field is completely determined by the intensity sign of the vortex located downstream. At the limiting 
values of F0 at which tile problem can be solved, the distinct nonlinear character  of the generated waves is 

observed. 
The  results of calculations for the dimensionless coefficients of hydrodynamic  loads 

2R~j 2Ryj 
Cxj = p Y s  C~j - pYs  (j = 1, 2) 

that act on the vortices are given in Fig. 4 and Table 1. For Fr = 0.5, owing to the small distance between 
the vortices and the small amplitudes of the generated waves, the main contr ibution to Cxj is from the force 
of interaction between the vortices. This  fact explains the difference between these coefficients calculated for 
different Fr and the presence of the pulling force for the downstream flow for Fr = 0.5. For Fr = 0.8 and 1, 
the forces of the wave effect, which result  in the appearance of the force of resistance for both vortices, are 
manifested. The values of the coefficient Cyj are determined by the Joukowski lift force and depend little on 
the Froude number. This  fact is supported by the values listed in Table 1; for fixed F0 and different Fr, they 

differ slightly. 
This work was supported by the Russian Foundation for Fundamental  Research (Grant No. 96-01- 

00093). 
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